Empfehlungen für die datengestützte Degradationsabschätzung

In einer neuen Veröffentlichung auf der 15. International Conference on Research Challenges in Information Science geben die Autor:innen Empfehlungen für die datengestütze Abschätzung des Degradierungszustandes inkl. zweier Fallstudien aus den Bereichen Fertigung und Schaffahrt.

Autoren: Nils Finke (Oldendorff Carriers GmbH & Co. KG., Universität zu Lübeck), Marisa Mohr (inovex GmbH, Universität zu Lübeck), Alexander Lontke (inovex GmbH, Universität Würzburg), Marwin Züfle (Universität Würzburg), Samuel Kounev (Universität Würzburg), und Ralf Möller (Universität zu Lübeck)


Predictive planning of maintenance windows reduces the risk of unwanted production or operational downtimes and helps to keep machines, vessels, or any system in optimal condition. The quality of such a data-driven model for the prediction of remaining useful lifetime is largely determined by the data used to train it. Training data with qualitative information, such as labeled data, is extremely rare, so classical similarity models cannot be applied. Instead, degradation models extrapolate future conditions from historical behaviour by regression. Research offers numerous methods for predicting the remaining useful lifetime by degradation regression. However, the implementation of existing approaches poses significant challenges to users due to a lack of comparability and best practices. This paper provides a general approach for composing existing process steps such as health stage classification, frequency analysis, feature extraction, or regression models for the estimation of degradation. To challenge effectiveness and relations between the steps, we run several experiments in two comprehensive case studies, one from manufacturing and one from dry-bulk shipping. We conclude with recommendations for composing a data-driven degradation estimation process.


Remaining useful lifetime, Bearing, Vessel performance 

About this paper

Cite this paper as: Finke N., Mohr M., Lontke A., Züfle M., Kounev S., Möller R. (2021) Recommendations for Data-Driven Degradation Estimation with Case Studies from Manufacturing and Dry-Bulk Shipping. In: Cherfi S., Perini A., Nurcan S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_12